- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
神经网络该如何看待社会网络
展开查看详情
1 .How Neural Networks See Social Networks Daniel Darabos, Janos Maginecz #DLSAIS11
2 .Context Lynx does social network analytics for telcos & others. We use graph convolutional neural networks. Good predictions of missing data and future behavior. We want to understand how the network does it. #DLSAIS11 2
3 .Graph Convolutional Network #DLSAIS11 3
4 .input network prediction #DLSAIS11 4
5 . repeat n times state new state input network prediction #DLSAIS11 5
6 . repeat n times state new state vertex features network for each known vertex labels prediction neighbor vertex state edges #DLSAIS11 6
7 .“Neural Network That Learns From a Huge Graph” Spark Summit East 2017 #DLSAIS11 7
8 .Running Examples #DLSAIS11 8
9 .complete real data network prediction #DLSAIS11 9
10 . ✔ Validated against ✔ known labels ARTIAL real data Pcomplete network prediction #DLSAIS11 10
11 . ✔ Validated against ✔ known labels ARTIAL real data Pcomplete network prediction attribution & feature explanation visualization #DLSAIS11 11
12 . ✔ Validated against ✔ known labels t he t ic complete real data network prediction syn ✔ Validated against ✔ known rules attribution & feature explanation visualization #DLSAIS11 12
13 .Running example: Three Friends Real social network edges. positive Synthetic features: random “talent”, 0–1. Synthetic labels: “three friends are rockstars” or not. “rockstar” means “talent” > θ rockstar #DLSAIS11 13
14 . node rockstar color is class subject node #DLSAIS11 14
15 . direct neighbor Running example: Friends of Friends rockstar Real social network edges. Synthetic features: random “talent”, 0–1. Synthetic labels: “distance to a rockstar is 2” or not. “rockstar” means “talent” > θ positive #DLSAIS11 15
16 .Running example: age prediction 10–20 Real social network edges. 29–69 No features. Real labels: age bucket (4 equal-sized buckets) 20–24 24–29 #DLSAIS11 16
17 .Running example: gender prediction Real social network edges. No features. Real labels: gender female male #DLSAIS11 17
18 .Feature Visualization #DLSAIS11 18
19 .Feature visualization What fictional inputs exemplify a class the most? “Feature Visualization” Chris Olah, et al., Distill #DLSAIS11 19
20 .Creating examples random noise optimized image backprop on input to maximize class probability “Visualizing Higher-Layer Features of a Deep Network” Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pascal Vincent #DLSAIS11 20
21 .Creating graph examples Initial state: complete graph with 10 vertices features randomized, 0–1 Backprop: features adjacency matrix #DLSAIS11 21
22 .Feature visualization: Friends of Friends #DLSAIS11 22
23 .Feature visualization: Friends of Friends #DLSAIS11 23
24 .Feature visualization: Three Friends #DLSAIS11 24
25 .Feature visualization: age prediction 24–29 99.2% confidence #DLSAIS11 25
26 .Feature visualization: age prediction 29–69 99.9998% confidence #DLSAIS11 26
27 .Feature visualization: age prediction 99.99% 24–29 confidence 29–69 10–20 #DLSAIS11 27
28 .Feature visualization: age prediction 99.99% 24–29 confidence 10–20 #DLSAIS11 28
29 .Feature visualization: age prediction 99.99% 24–29 confidence 10–20 #DLSAIS11 29