- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 文档嵌入链接
- <iframe src="https://www.slidestalk.com/u180/Matchmaking_Audiences_to_Content_?embed" frame border="0" width="640" height="360" scrolling="no" allowfullscreen="true">复制
- 微信扫一扫分享
如何使观众读者们满意
展开查看详情
1 .Matchmaking Audiences to Content Lucy X. Wang, BuzzFeed #AI8SAIS
2 .BuzzFeed #AI8SAIS 2
3 .#AI8SAIS 3
4 .A vast network of social channels • 10+ platforms • 400+ accounts • 1200+ pieces of content published a week #AI8SAIS 4
5 .But how do we scale our curation? #AI8SAIS 5
6 .By mimicking human curation #AI8SAIS 6
7 .3 use cases for AI 1. Surface relevant content for each channel 2. Surface evergreen content 3. Automate publishing #AI8SAIS 7
8 .Case 1: How do we recommend relevant content for each channel? #AI8SAIS 8
9 .Content too often slips through the cracks #AI8SAIS 9
10 .Training on human curation data #AI8SAIS 10
11 .A language-based relevance model #AI8SAIS 11
12 .Predicting relevance from titles #AI8SAIS 12
13 .Consolidated into one model #AI8SAIS 13
14 .Examples #AI8SAIS 14
15 .Impact unlike rate remains stable #AI8SAIS 15
16 .Case 2: How do we find evergreen content to re-circulate? #AI8SAIS 16
17 .Taking advantage of evergreen posts 2016 2018 55K clicks 36K clicks #AI8SAIS 17
18 .A model based on content and traffic performance #AI8SAIS 18
19 .Not much human curation data #AI8SAIS 19
20 .Our labelling proxy timely evergreen #AI8SAIS 20
21 .Handling poorly-labeled data timely? #AI8SAIS 21
22 .Modeling with uncertainty ! 1 !"#$"%&'() = + + 234 ,(.( )+ +,(.( ) + #AI8SAIS 22
23 .Examples #AI8SAIS 23
24 .Impact median clicks per post doubled (+108%) with addition of evergreen recommendations unlike rate remains stable #AI8SAIS 24
25 .Case 3: How do we automate publishing? #AI8SAIS 25
26 .Mixing human and AI curation #AI8SAIS 26
27 .Optimal scheduling model #AI8SAIS 27
28 .Trying all scheduling times #AI8SAIS 28
29 .How do we validate these models? #AI8SAIS 29