- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
Sketching as a Tool for Numerical Linear Algebra
展开查看详情
1 .Sketching as a Tool for Numerical Linear Algebra David Woodruff IBM Almaden
2 .Talk Outline Exact Regression Algorithms Sketching to speed up Least Squares Regression Sketching to speed up Least Absolute Deviation (l1) Regression Sketching to speed up Low Rank Approximation 2
3 .Regression Linear Regression Statistical method to study linear dependencies between variables in the presence of noise. Example Ohm's law V = R ∙ I Find linear function that best fits the data 3
4 .Regression Standard Setting One measured variable b A set of predictor variables a1 ,…, a d Assumption: b = x0 + a1 x1 + … + ad xd + is assumed to be noise and the xi are model parameters we want to learn Can assume x0 = 0 Now consider n observations of b 4
5 .Regression analysis Matrix form Input: nd-matrix A and a vector b=(b1,…, bn) n is the number of observations; d is the number of predictor variables Output: x* so that Ax* and b are close Consider the over-constrained case, when n À d Can assume that A has full column rank 5
6 .Regression analysis Least Squares Method Find x* that minimizes |Ax-b|22 = (bi – <Ai*, x>)²)² Ai* is i-th row of A Certain desirable statistical properties Closed form solution: x = (ATA)-1 AT b Method of least absolute deviation (l1 -regression) Find x* that minimizes |Ax-b|1 = |bi – <Ai*, x>)²| Cost is less sensitive to outliers than least squares Can solve via linear programming Time complexities are at least n*d2, we want better! 6
7 .Talk Outline Exact Regression Algorithms Sketching to speed up Least Squares Regression Sketching to speed up Least Absolute Deviation (l1) Regression Sketching to speed up Low Rank Approximation 7
8 .Sketching to solve least squares regression How to find an approximate solution x to minx |Ax-b|2 ? Goal: output x‘ for which |Ax‘-b|2 · (1+ε) minx |Ax-b|2 with high probability Draw S from a k x n random family of matrices, for a value k << n Compute S*A and S*b Output the solution x‘ to minx‘ |(SA)x-(Sb)|2 8
9 .How to choose the right sketching matrix S? Recall: output the solution x‘ to minx‘ |(SA)x-(Sb)|2 Lots of matrices work S is d/ε2 x n matrix of i.i.d. Normal random variables Computing S*A may be slow… 9
10 .How to choose the right sketching matrix S? [S] S is a Johnson Lindenstrauss Transform S = P*H*D D is a diagonal matrix with +1, -1 on diagonals H is the Hadamard transform P just chooses a random (small) subset of rows of H*D S*A can be computed much faster 10
11 .Even faster sketching matrices [CW,MM,NN] CountSketch matrix Define k x n matrix S, for k = d2/ε2 S is really sparse: single randomly chosen non-zero entry per column [ 0010 01 00 1000 00 00 0 0 0 -1 1 0 -1 0 [ Surprisingly, this works! 0-1 0 0 0 0 0 1 11
12 .Talk Outline Exact Regression Algorithms Sketching to speed up Least Squares Regression Sketching to speed up Least Absolute Deviation (l1) Regression Sketching to speed up Low Rank Approximation 12
13 .Sketching to solve l1-regression How to find an approximate solution x to minx |Ax-b|1 ? Goal: output x‘ for which |Ax‘-b|1 · (1+ε) minx |Ax-b|1 with high probability Natural attempt: Draw S from a k x n random family of matrices, for a value k << n Compute S*A and S*b Output the solution x‘ to minx‘ |(SA)x-(Sb)|1 Turns out this does not work! 13
14 .Sketching to solve l1-regression [SW] Why doesn’t outputting the solution x‘ to minx‘ |(SA)x- (Sb)|1 work? Don‘t know of k x n matrices S with small k for which if x‘ is solution to minx |(SA)x-(Sb)|1 then |Ax‘-b|1 · (1+ε) minx |Ax-b|1 with high probability Instead: can find an S so that |Ax‘-b|1 · (d log d) minx |Ax-b|1 S is a matrix of i.i.d. Cauchy random variables 14
15 .Cauchy random variables Cauchy random variables not as nice as Normal (Gaussian) random variables They don’t have a mean and have infinite variance Ratio of two independent Normal random variables is Cauchy 15
16 .Sketching to solve l1-regression How to find an approximate solution x to minx |Ax-b|1 ? Want x‘ for which if x‘ is solution to minx |(SA)x-(Sb)|1 , then |Ax‘-b|1 · (1+ε) minx |Ax-b|1 with high probability For d log d x n matrix S of Cauchy random variables: |Ax‘-b|1 · (d log d) minx |Ax-b|1 For this “poor” solution x’, let b’ = Ax’-b Might as well solve regression problem with A and b’ 16
17 .Sketching to solve l1-regression Main Idea: Compute a QR-factorization of S*A Q has orthonormal columns and Q*R = S*A A*R-1 turns out to be a “well-conditioning” of original matrix A Compute A*R-1 and sample d3.5/ε2 rows of [A*R-1 , b’] where the i-th row is sampled proportional to its 1-norm Solve regression problem on the (reweighted) samples 17
18 .Sketching to solve l1-regression [MM] Most expensive operation is computing S*A where S is the matrix of i.i.d. Cauchy random variables All other operations are in the “smaller space” Can speed this up by choosing S as follows: [ [ 0010 01 00 1000 00 00 0 0 0 -1 1 0 -1 0 [ ¢ C1 C2 C3 [ 0-1 0 0 0 0 0 1 … Cn 18
19 .Further sketching improvements [WZ] Can show you need a fewer number of sampled rows in later steps if instead choose S as follows Instead of diagonal of Cauchy random variables, choose diagonal of reciprocals of exponential random variables [ [ 0010 01 00 1000 00 00 0 0 0 -1 1 0 -1 0 [ ¢ 1/E1 1/E2 1/E3 [ 0-1 0 0 0 0 0 1 … 1/En 19
20 .Talk Outline Exact regression algorithms Sketching to speed up Least Squares Regression Sketching to speed up Least Absolute Deviation (l1) Regression Sketching to speed up Low Rank Approximation 20
21 .Low rank approximation A is an n x n matrix Typically well-approximated by low rank matrix E.g., only high rank because of noise Want to output a rank k matrix A’, so that |A-A’|F · (1+ε) |A-Ak|F, w.h.p., where Ak = argminrank k matrices B |A-B|F For matrix C, |C|F = (Σi,j Ci,j2)1/2 21
22 . Solution to low-rank approximation [S] Given n x n input matrix A Most time- consuming Compute S*A using a sketching matrix S with k << n rows. S*A takes random linear combinations of rows of A step is computing S*A A SScan canbe bematrix matrixof ofi.i.d. i.i.d. Normals Normals SScan canbe beaaFast FastJohnson Johnson SA Lindenstrauss LindenstraussMatrix Matrix Project rows of A onto SA, then find best rank-k SScan can be be aaCountSketch CountSketch approximation to points inside of SA. matrix matrix 22
23 .Conclusion Gave fast sketching-based algorithms for Least Squares Regression Least Absolute Deviation (l1) Regression Low Rank Approximation Sketching also provides “dimensionality reduction” Communication-efficient solutions for these problems 23