- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
18InteractionTechnique--Disabilities
展开查看详情
1 .1 © 2014 - Brad Myers Brad Myers 05-899A/05-499A: Interaction Techniques Spring, 2014 Lecture 18: Interaction Techniques for People with Disabilities
2 .Announcements Project groups are on GoogleDoc 2-page proposal due next Monday Jeff and I are available to meet this week as needed © 2014 - Brad Myers 2
3 .© 2014 - Brad Myers 3
4 .People With Disabilities People with Disabilities may have trouble with conventional interaction techniques Motor difficulties – difficulty with controlling mouse and keyboard Blind / low vision – difficulty with graphical interfaces Cognitive impairments and learning disabilities Less focus on this area Significant autism research, but mainly using computers in education or monitoring Deaf, etc. less of an issue Still may benefit from computerized assistance, but usually can use conventional interaction techniques © 2014 - Brad Myers 4
5 .“Assistive Technology” Wikipedia: “Any item, piece of equipment, or product system, whether acquired commercially, modified, or customized, that is used to increase, maintain, or improve functional capabilities of individuals with disabilities” Includes fatter spoon handles, hearing aides, and screen readers “ Accessibility software ” “Accessibility of a computer system to all people, regardless of disability or severity of impairment” © 2014 - Brad Myers 5
6 .“Universal Design ” One design works for everybody Typical example: curb cuts “Situational Impairments” Trying to type on Smartphone while walking Trying to enter numbers without looking at a screen (e.g., while driving) Elderly Less accuracy, lower vision, cognitive difficulties © 2014 - Brad Myers 6
7 .Kinds of Physical Disabilities Cerebral Palsy Result of brain damage to motor control parts of brain, often prenatally or as an infant Doesn’t get worse Limited physical control 58% have difficulties with communication Often cannot talk or control their hands Often, no affect on intelligence 42% have problems with their vision 23–56% have learning disabilities 2.1 per 1,000 live births Wide range of abilities © 2014 - Brad Myers 7
8 .Kinds of Physical Disabilities Cerebral Palsy Result of brain damage to motor control parts of brain, often prenatally or as an infant Doesn’t get worse Limited physical control 58% have difficulties with communication Often cannot talk or control their hands Often, no affect on intelligence 42% have problems with their vision 23–56% have learning disabilities 2.1 per 1,000 live births Wide range of abilities © 2014 - Brad Myers 7
9 .Kinds of Physical Disabilities Cerebral Palsy Result of brain damage to motor control parts of brain, often prenatally or as an infant Doesn’t get worse Limited physical control 58% have difficulties with communication Often cannot talk or control their hands Often, no affect on intelligence 42% have problems with their vision 23–56% have learning disabilities 2.1 per 1,000 live births Wide range of abilities © 2014 - Brad Myers 7
10 .Blindness and Visual Disabilities Estimate that about 6,600,000 people in US had a visual disability in 2011 ( cite ) Many levels No vision from birth Need magnification Color blindness © 2014 - Brad Myers 10
11 .Assistive Technologies Built into OSs Windows has a whole collection of adaptations Magnifier – make whole screen or a portion bigger Can also just use larger fonts, lower resolution Change colors and contrast Narrator – read the words on the screen On-Screen keyboard Can be scanned Built-in speech recognition © 2014 - Brad Myers 11
12 .Assistive Technologies Built into OSs, cont Adaptations for mouse Make mouse easier to see Move mouse with the keyboard Adaptations for keyboard Sticky Keys – so no need for chords Work like on Smartphones © 2014 - Brad Myers 12
13 .On Screen Keyboards Built-in or add-on Usually add auto-complete and auto-predict Auto-predict: Pr edict next word based on previous words with no letters typed Can point to on-screen keyboards with various mechanisms Example: head tracking ( video 3:05 ) Or use scanning keyboards Sip and puff to select ( video 3:55) © 2014 - Brad Myers 13
14 .Screen Readers for the Blind Reads the words on the screen Keystroke to move to next area Blind people can operate them amazingly quickly JAWS – job access with speech Example: video 7:23 IBM Home Page Reader – by Chieko Asakaw a from IBM Japan , visiting CMU this semester © 2014 - Brad Myers 14
15 .Assistive Technologies in iPhone Many pages of accessibility settings VoiceOver – reads what is on screen Speech recognition for controlling device Zoom – screen magnifier – 3 finger tap Closed captions on videos AssistiveTouch – so don’t need multiple fingers, don’t need to press Home button, etc. Switch Control (ios7) – Scanning through items with optional connection to external switch How to set it up with BlueTooth ( video 7:14) Can use head movement with built in camera ( video 3:25) © 2014 - Brad Myers 15
16 .Augmentative and Alternative Communication (AAC ) devices Talk for people Originally were cardboard pictures that would point at Now computerized Custom devices or tablet applications DynaVox (Example in use - video 3:41 ) MinSpeak by Semantic Compaction Both Pittsburgh companies! Usually pictures since faster than typing Pointing – head or eye tracking or scanning with switch (like keyboards) © 2014 - Brad Myers 16
17 .Web Accessibility http:// www.w3.org/WAI/intro/accessibility.php Original web was a real boon to handicapped All text, easily navigated, provided access to: “ education, employment, government, commerce, health care, recreation, and more” Then it got more complicated and in accessible Standards and requirements emerged to help Includes: Using appropriate html standards, e.g., <h3>, not <b> “Alt” labels for pictures Easy distinguishing between content and navigation Link at top that goes directly to content for screen readers Clearly marked links to multi-media content, etc. … many more © 2014 - Brad Myers 17
18 .Research: RemoteCommander Brad A. Myers, Jacob O. Wobbrock, Sunny Yang, Brian Yeung, Jeffrey Nichols, and Robert Miller. "Using Handhelds to Help People with Motor Impairments", Fifth International ACM SIGCAPH Conference on Assistive Technologies; ASSETS 2002. July 8-10, 2002. Edinburgh, Scotland. pp. 89-96. http://www.cs.cmu.edu/~ pebbles/papers/pebbleshandicapped.pdf We were researching using Palm Pilots to augment regular computers Pebbles Remote Commander allows the Palm to be mouse and keyboard for a PC Found by a father of a 10-year old with Muscular Dystrophy (MD) and he wrote a testimonial Found some long cables & special stylus © 2014 - Brad Myers 18
19 .Research: RemoteCommander Brad A. Myers, Jacob O. Wobbrock, Sunny Yang, Brian Yeung, Jeffrey Nichols, and Robert Miller. "Using Handhelds to Help People with Motor Impairments", Fifth International ACM SIGCAPH Conference on Assistive Technologies; ASSETS 2002. July 8-10, 2002. Edinburgh, Scotland. pp. 89-96. http://www.cs.cmu.edu/~ pebbles/papers/pebbleshandicapped.pdf We were researching using Palm Pilots to augment regular computers Pebbles Remote Commander allows the Palm to be mouse and keyboard for a PC Found by a father of a 10-year old with Muscular Dystrophy (MD) and he wrote a testimonial Found some long cables & special stylus © 2014 - Brad Myers 18
20 .Research Lots of current work on accessibility Annual 3-day conference: ASSETS’14 CHI’13: at least 5 papers and 11 posters UIST’13: at least 2 posters But not all is about interaction techniques © 2014 - Brad Myers 20
21 .Research Lots of current work on accessibility Annual 3-day conference: ASSETS’14 CHI’13: at least 5 papers and 11 posters UIST’13: at least 2 posters But not all is about interaction techniques © 2014 - Brad Myers 20