- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 视频嵌入链接 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
基于可学习语义先验的图像补全
内容介绍
图像补全作为图像处理中的基础问题之一有着广泛的应用场景。借助于深度神经网络,近期的图像补全工作已经能对简单的自然场景生成很好的补全效果。但是在更复杂的场景下,由于信息缺失导致的上下文歧义使得已有方法难以恢复出清晰合理的视觉内容。针对这一问题,我们从场景理解入手,尝试引入预训练模型中的语义先验信息帮助缓解缺失区域的上下文歧义,从而提升图像补全,特别是结构性信息的补全效果。具体的,我们提出了一个双路生成网络。首先通过引入语义抽取类任务(分类,检测等)预训练模型的特征图作为重构目标,借助于知识蒸馏的方法,使得网络学习到具有隐式语义的上下文信息,这一信息被称为语义先验(semantic prior)。
基于学习到的语义先验,我们提出了一个上下文感知的图像补全模型,我们利用像素级仿射变换模块,将语义先验和图像纹理信息进行融合,实现了利用全局语义信息辅助细粒度纹理恢复的目标。
最后我们在三个常用的图像补全数据集上对比了相关的主流方法,我们的模型取得了最好的结果。相关代码和预训练模型已开源。
关于讲师
张文冬,上海交通大学人工智能研究院在读博士生。主要研究兴趣集中于图像生成,图像场景理解及补全。目前已在ACM MM, IJCAI, CVPR, AAAI 等会议和期刊上发表论文5篇。
展开查看详情
1 .
2 .https://github.com/WendongZh/SPL
3 .Problem Definition & Application 𝑓(𝑀, 𝐼𝑚 ) 𝑀 𝐼𝑚 𝐼 Image Restoration1 1. Bringing Old Photos Back to Life, CVPR’20
4 .Problem Definition & Application 𝑓(𝑀, 𝐼𝑚 ) 𝑀 𝐼𝑚 𝐼 Image and video editing2,3 2. AOT-GAN, Zeng et.al 3. Deep Flow-Guided Video Inpainting, CVPR’19
5 .Problem Definition & Application 𝑓(𝑀, 𝐼𝑚 ) 𝑀 𝐼𝑚 𝐼 Image and video editing4 4. Insta360 ONE X 相机
6 .Problem Definition & Application 𝑓(𝑀, 𝐼𝑚 ) 𝑀 𝐼𝑚 𝐼 Image manipulation & detection5 5. Markpainting: Adversarial Machine Learning meets Inpainting, ICML’21
7 .Related Work 𝑓(𝑀, 𝐼𝑚 ) 𝑀 𝐼𝑚 𝐼 Key Problem: 1. How to extract rich context information from valid pixels. 2. How to reduce the context ambiguities in missing regions
8 .Related Work 𝑓(𝑀, 𝐼𝑚 ) 𝑀 𝐼𝑚 𝐼 VAE: Pluralistic Image Completion, CVPR’19 GAN: PD-GAN: Probabilistic Diverse GAN for Image Inpainting, CVPR’21 Probabilistic Auto-regressive: Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE, CVPR’21 model StyleGAN based: Co-Modulated GAN, ICLR’21 Early work: Texture diffusion, Patch-based methods Deterministic model
9 . Related Work DSNet, TIP’21 Operation cell: AOT-GAN, Zeng et. al PC Conv RFR, CVPR’20 MRF, ICCV’21 Deep learning Pipeline: Generative image inpainting with contextual attention SF, CVPR’19 Structure MFE, ECCV’20 enhance: CTSD, ICCV’21 EdgeConnect: Generative Image Inpainting with Adversarial Edge (EC)
10 .Motivation ➢ The context ambiguity is one of the major sticking points in restoring reasonable contents, which cannot be well tackled with only local textures. GT Input Out(RFR) GT Input Out(RFR) ➢ Low-level structure supervisions mainly focus on local texture consistency instead of global context, which cannot handle more complicated structure restoration. Input Out Edge(EC) Out(EC) Input Out Edge(EC) Out(EC)
11 .Motivation Contributions: 1. We show that distilling high-level knowledge from specific pretext tasks can benefit the understanding of global contextual relations and is meaningful to low-level image inpainting 2. We propose SPL, a new model for context-aware image inpainting, which adaptively incorporates the learned semantic priors and the local image features in a unified generative network
12 .Method 1. Semantic Learner. We use three down-sample layer with residual dense layer to learn semantic priors 𝑆𝑚 . Then, a 1x1 convolutional layer is exploited to adapt 𝑆𝑚 to the representations from the pretext model. 2. Semantic Supervision. We use multi-label classification as the pretext task, in which the model was pretrained on the Open Image dataset. We do not finetune the model on any image inpainting datasets.
13 .Method 3. Image Encoder. We use three down-sample layer to extract rich low-level features from visible contents to form the conditional input. 4. Image Decoder. We exploit 8 ResBlocks with the spatially-adaptive normalization module (SPADE) to spatially inject the semantic priors into the decoding phase.
14 .Method
15 .Datasets
16 .Results We evaluate our model on three popular datasets, including Places2, CelebA , and Paris StreetView.
17 .Results More visual results of our method GT Input Out GT Input Out
18 .Results Quantitative results MFE: Rethinking Image Inpainting via a Mutual Encoder-Decoder with Feature Equalizations, ECCV’20 RN: Region Normalization for Image Inpainting, AAAI’20 RFR: Recurrent Feature Reasoning for Image Inpainting, CVPR’20
19 .Ablation Studies w/o S: no semantic supervision Concat: replace SPADE with simple concatenate w/ Yolov5: using detection model to provide semantic supervision
20 .Feature Analysis We conduct the k-means algorithm on the learned semantic priors and use different colors to represent different clusters. We can see that the EC model cannot restore reasonable structures for complex scenes. Instead, the semantic priors learned by our method reduce the context ambiguities and provide explicit guidance for both global and local structure restoration
21 .Feature Analysis Input GT Ours Semantic Texture(Before) Texture(After)
22 .Future Work Key Problem: 1. How to (efficiently) extract rich context information from valid pixels. 2. How to reduce the context ambiguities in missing regions. Future: 1. High-level semantic information can help image inpainting to what extend? 2. What about other low-level vision tasks? 3. Can low-level unsupervised learning incorporate with high-level unsupervised learning
23 .Future Work Future: 1. High-level semantic information can help image inpainting to what extend? Cup, location, color …. Table, location, color …. …….. 2. What about other low-level vision tasks? 3. Can low-level vision task incorporates with high-level task. Visiting the Invisible, IJCV’21
24 .