- 快召唤伙伴们来围观吧
- 微博 QQ QQ空间 贴吧
- 视频嵌入链接 文档嵌入链接
- 复制
- 微信扫一扫分享
- 已成功复制到剪贴板
基于语音大模型的零样本学习的语音生成和翻译-刘树杰
刘树杰-微软亚洲研究院首席研究经理
微软亚洲研究院首席研究员和研究经理,2012年博士毕业于哈尔滨工业大学。2012年加入微软亚洲研究院,从事自然语言处理、语音处理以及机器学习相关工作。在自然语言处理和语音处理各顶级期刊和会议上发表论文100余篇,并合著《机器翻译》一书,参与编写《人工智能导论》一书。获得国际自然语言和语音处理评测比赛多项第一。担任多个国际会议审稿人及领域主席。其研究成果被广泛应用于Microsoft Translator、Skype Translator、Microsoft IME和微软语音服务等微软重要产品中。
分享介绍:
随着大语言模型在自然语言处理中的应用,语音大语言模型也逐渐受到更多关注。在本报告中,我们将介绍基于大语言模型的零样本语音合成技术,即VALL-E。VALL-E利用了大语言模型在上下文学习方面的能力,仅需使用未知说话人的三秒录音作为音频提示,即可生成高质量的个性化语音。此外,我们还进一步将VALL-E扩展为VALL-E X,实现了高质量的跨语言语音合成,显著减轻了外语口音的问题。通过利用大语言模型技术,进一步的我们将VALL-E (X) 从语音合成任务扩展到了语音识别和机器翻译,并使用一个统一的模型来实现语音识别,翻译和合成三个任务,从而可以实现高质量的基于单一模型的零样本级联式语音到语音的翻译。
展开查看详情
1 .Toward Speech Large Language Model for Zero-Shot Speech Synthesis and Translation Shujie Liu Principal Research Manager in MSRA 1
2 .Speech Processing vs NLP 我 来自 中 国 MT I am from China
3 . GPT is hot, and LLM is used everywhere. If we convert all the speech data to discrete tokens, is it possible to train a speech version GPT? How to build the token-based How to convert What kind of data speech speech to tokens? we can use ? processing models?
4 .From Continuous Signals to Discrete Tokens 9 16 52 ... 84 … … … ... … 71 12 38 ... 67 12 43 8 ... 59 I am from I am from China China ASR TTS
5 .How to Convert Speech to Tokens? + + + 12 43 8 ... 59 71 2138 ... 67 9 1652 ... 84 Quantized Tokens stage 8 9 16 52 ... 84 ... Encoder Decoder VQ 8 VQ 2 VQ 1 ... stage 2 71 21 38 ... 67 - - stage 1 12 43 8 ... 59 residual 1 residual 2 residual 7 Neural Audio Codec: EnCodec Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. High Fidelity Neural Audio
6 .Speech Data Size of different sets (hours) TTS performs well on specific speakers, and large data just brings degradation? 1200000 ASR 1000000 If we train a large speech GPT model, can the in-context learning capacity 800000 help the zero-shot TTS? 1000000 hours 600000 600 TTS 400000 200000 60000 960 0 LibriSpeech Libri-Light Unlabeled Data Multi-speaker TTS
7 .Speech Model Size GPT4 (1Trillion) NLP models GPT-3 (175B) PaLM (540B) T5 (11B) GPT-2 (1.5B) BigSSL (8B) VALL-E (1B) ELMo (M) BERT-L (340M) Traditional TTS (<100M) 2018 2019 2020 2021 2022 2023
8 .Build a Speech Version of GPT: the first try • Discrete representations Neural Codec Codes (Encodec) • Use large and diverse data Large ASR data (60K hours Librilight Data) • Large Transformer structure Decoder Only Network (1B) • Focus on long-tail problems Zero-shot TTS /S2ST (Clone voice with 3s speech)
9 .VALL-E: Neural Codec Language Modeling Personalized Speech Audio Codec Decoder Neural Codec Language Modeling Phoneme Audio Codec Conversion Encoder Text Acoustic Prompt Prompt Text for synthesis 3-second enrolled recording
10 . Stage1: AR Transformer ��,� ��,� ��,� … <EOS AR: �� only attends to left > � � �� �� � AR Transformer Decoder � � �� G2P ��,� ��,� … ��′,� ��,� ��,� … ��,� Text EnCodec �� Allow attend Disallow attend Conditional Codec Language Modeling
11 . Stage2: NAR Transformer NAR: attend to all tokens ��,� ��,� … ��,� �−� �−� � � �� �� � NAR Transformer Decoder � � � �−� �� G2P EnCodec ��,�:�−� ��,�:�−� … ��,�:�−� �−� NAR ID � �� Text Prompt
12 .Experiment Setting • Model • Stage1 and Stage2: 12 layers 1024 hidden states Transformer • Data • Libri-Light 60k hours with 7000 speakers • Training • 16 V100(32GB) • Batch size of 6k acoustic tokens per GPU • 800k steps for 5 days • Latency (Real Time Factor) • A100: RTF = 0.5 • V100: RTF = 1.0
13 .Experiment Results (LibriSpeech) Automatic Evaluation Human Evaluation
14 .Speech Diversity
15 . Zero-shot TTS Examples Prompt VALL-E Anger Sleepy Cat Dog Cat is a girl. Dog is a boy.
16 .Audio Book for Reid Hoffman VALL-E Reid Hoffman https://www.reidhoffman.org/ai-voice-synthesis- tech-impromptu/
17 .VALL-E X: Cross-Lingual Neural Codec Language Model
18 .VALL-E X Inference
19 .Experiment Results (Cross-Lingual TTS) Automatic Evaluation Human Evaluation EMIME Dataset
20 .Zero-shot Cross-lingual TTS Examples Emotion English Prompt VALL-E X Emotion Chinese Prompt VALL-E X Ange Angry r Amused Happy Sleepines Surprise s Disgus Sad t Neutral Neural English Chinese Chinese English
21 .Experiment Results (Language ID) Chinese Speech with English English Prompt Chinese Speech with Chinese ID ID Foreign Acescent
22 .
23 .Speech LLM Text Speech Detokenizer Detokenizer Speech LLM Speech Text • Tokenizers to map speech and text into one semantic Tokenizer Tokenizer space • Detokenizers to construct the speech and text • Decoder only network for multi-modal LLM modeling • Can leverage pre-trained LLMs such as LLAMA
24 .VioLA: A Unified Model for ASR, MT, TTS and ST
25 .Results of S2ST Source Target Speech (VioLA) Speech 请允许我标记出一些观点 PLEASE ALLOW ME TO MARK SOME VIEWS 我们拒绝这项社会不认可的改革 WE REJECT THIS SOCIALLY UNACKNOWLEDGED REFORM
26 . Demo Source Video VioLA
27 .Summary • Regarding similarity, VALL-E X outperforms other methods significantly, even parity with ground-truth, with large ASR data. • VoiLA extends VALL-E X to build one unified model for ASR, MT and TTS, significantly improve the performance for zero-shot speech to speech translation. • Codec based decoder only pre-training opens a new door for speech processing, may be applied to any speech processing tasks, including ASR, enhancement, voice conversion, etc. • Is it possible to convert all the different modalities to sequences of tokens and train one GPT model? https://www.microsoft.com/en-us/research/project/vall-e- x/overview/
28 .28